Глубинная дегазация Земли влияет на землетрясения, погоду, лесные пожары, урожайность растений, интенсивность роста леса и многое другое. Уникальное междисциплинарное исследование глубинной дегазации проведено в Архангельском Институте геодинамики и геологии ФГБУН ФИЦКИА РАН
Доклад сотрудников Института геодинамики и геологии ФГБУН ФИЦКИА РАН (Архангельск) доктора геолого-минералогических наук Юрия Григорьевича Кутинова,кандидата геолого-минералогических Зинаиды Борисовны Чистовой, доктора сельскохозяйственных наук Владимира Васильевича Беляева и кандидата сельскохозяйственных наук Николая Александровича Неверова «Покомпонентные модели тектонических узлов» на ХХIV заседании Всероссийского междисциплинарного семинара-конференции геологического и географического факультетов МГУ «Система Планета Земля» 30 января — 2 февраля 2018 года.
* * *
К настоящему времени большинством исследователей осознано, что Земля как планета представляет собой цельную, сложную и многооболочечную систему, которая характеризуется как открытая, неравновесная, самоорганизующаяся и саморазвивающаяся. При этом, если речь идет об изучении процессов взаимодействия геосфер, то имеет смысл использовать либо сферный подход при описании строения и состояния среды (атмосфера, биосфера, литосфера, гидросфера, техносфера) и рассматривать связи между сферами как внешние, либо экосистемный подход (водные, почвенные и другие экосистемы) (Белоусова, 1998) и рассматривать совокупность внешних и внутренних связей подсистем, имеющих различные пространственно-временные закономерности развития. По глубокому убеждению авторов, при исследовании межгеосферных процессов предпочтение следует отдавать сферному (оболочечному) подходу, как более точно отражающему структуру изучаемого объекта.
Масштабы явлений, протекающих в системе взаимодействующих геосфер, определяются, прежде всего, распределением в них энергии (Зецер, 2009), то есть источниками и стоками энергии во внутренних и внешних геосферах, определяющими баланс и параметры процессов.
В целом энергия, накопленная во внутренних геосферах, выше, чем во внешних геосферах. Но энергия геосфер, которая поступает извне, сразу расходуется, в отличие от энергии внутренних геосфер. Кроме того, суммарная масса газов, заключенная в верхних геосферах, значительно меньше массы твердой Земли, включая океаны. Поэтому, сравнивая удельные по массе мощности для указанных геосфер (Табл. 1), можно заключить, что физические процессы, происходящие во внешних геосферах, расходуют гораздо больше мощности (энергии) на единицу массы, чем во внутренних геосферах.
Табл. 1. Оценка мощностей, расходуемых на глобальные процессы во внутренних и внешних геосферах (Зецер, 2009)
Внутренние геосферы |
Внешние геосферы |
||
Процесс охлаждения внутренних геосфер |
4,4•1013 Вт |
Мощность Аврорального высыпания электронов |
2•1011 Вт |
Поток механической энергии твердой Земли |
4,8•1012 Вт |
Мощность Джоулева нагрева ионосферы |
2,7·1010 Вт |
Энергия ядра и геомагнитного поля |
3,7•1012 Вт |
Мощность кольцевого тока |
6•109 Вт |
Суммарная мощность, расходуемая во внутренних геосферах |
5,25•1013 Вт |
Мощность образования плазмоида+мощность, расходуемая на нагрев плазменного слоя |
5•1010 Вт |
Средняя масса внутренних геосфер |
4•1024 кг |
Средняя масса внешних геосфер |
6•1019 кг |
Мощность, расходуемая во внутренних геосферах, приходящаяся на единицу массы |
1,3•10-11 Вт/кг |
Мощность, расходуемая во внешних геосферах, приходящаяся на единицу массы |
4•10-10 Вт/кг |
Представление о нашей планете как системе взаимодействующих геосфер диктует необходимость выделения и установления взаимных связей между различными процессами в геосферах. При этом геосферы не выступают как независимые, а под действием как внешних, так и внутренних возмущений непрерывно взаимодействуют друг с другом, обмениваясь энергией, импульсом и массой (Зецер, 2009). Однако конкретные формы и механизмы взаимодействия не так однозначны и слабо изучены. Традиционно наибольший интерес представляют нелинейные взаимодействия, определяемые достаточно сильными возмущениями, когда-либо возбуждаются несколько геосфер, либо реакция отдельной геосферы на такое возмущение настолько сильна, что возмущение передается на соседние геосферы (Адушкин, Зецер, 1994).
Наибольший интерес представляет исследование межгеосферных взаимодействий на границе земная кора — атмосфера, которая характеризуется высококонтрастными изменениями свойств контактирующих сред (Рис. 1) и где, по современным данным, потоки массы и энергии значительны (Новик, 2001, Резанов, 2002). Исследования геодинамических процессов, развивающихся в пределах указанной границы, проводятся в интенсивно развивающемся в последнее время разделе науки «Приповерхностная геофизика» (Slater, 2006). Эти исследования наиболее важны для определения условий обитания человека, их изменений и для предупреждения последствий катастрофических процессов, опасных для человека (Экология человека…, 2006)
А — земная кора; В — верхняя мантия; С — переходная зона; D' — D» — нижняя мантия; E, F, G — ядро.
1−3 — направления: (1) — потоков космической энергии и вещества, (2) — рассеяния внутренней энергии и миграции эндогенного вещества (тепломассообмен), (3) — увеличение относительной гомогенности и гетерогенности субстрата;4 — биосфера; 5 — гидросфера; 6 — глубинные разломы коровые (а), подкоровые (б); 7−10 — условные уровни вещественно-структурной гетерогенности Земли: (7) — химической неоднородности (на уровне ионов и элементарных частиц), (8) — горно-породной (а) и минеральной (б) неоднородности (от химических соединений до минералов), (9) — вещественно-структурной неоднородности геосферной расслоенности (от минеральных до формационных элементов), (10) — коровой неоднородности (от формационной до геосферной) со сложной блоковой расслоенностью.
В формировании режимов и динамики взаимодействия литосферы, атмосферы и ионосферы значительную роль играют разломно-блоковые структуры земной коры, в первую очередь разрывные нарушения. Особенности структуры и свойства тектонических зон определяют не только глубинную дегазацию и повышенную релаксацию горных пород, но и условия для формирования источников электромагнитных сигналов и обмен энергией между геофизическими полями разной природы, в том числе внешними и внутренними. Наличие глубинных разломов является одной из характерных черт литосферы, которые в период своего активного существования служат флюидопроводниками. Между нижними уровнями проникновения разломов в литосферу и дневной поверхностью существуют градиенты температуры (Т) (до 1000 0С) и давления (Р) (до 46−50 кбар), которые являются движущей силой переноса флюидов (по сути высокотемпературного электролита) (Экология человека., 2006).
Ранее нами была выделена единая циркумполярная зона влияния спрединга Северного Ледовитого океана (Рис. 2), что говорит о единстве происходящих здесь современных геодинамических процессов, особенно в районах тектонических узлов, что позволяет распространить выводы, получаемые на территории Архангельской области, на всю Арктическую зону России.
А — гравиметрическая карта России; Б — карта рельефа подошвы литосферы России; В — карта аномального магнитного поля (∆ Т) России. Пунктирной линией показана граница влияния зоны спрединга; Г — схема сопоставления характера аномальногомагнитного поля (АМП) (КА MAGSAT-400) с сейсмоактивными зонами: 1 — отрицательные области АМП, 2 — нулевые значения АМП, 3 — области корреляции АМП с крупными неоднородностями земной коры (I — Балтийский; II — Северо-Карский; III — Анабарский; IV — Алданский; V — Омолонский), 4 — сейсмоактивные зоны.
Основная сеть разломов севера Русской плиты была заложена главным образом в позднем архее (2600−2800 млн лет) в связи с кеноранским диастрофизмом (Салоп, 1982). В домезозойской истории разрывных нарушений отмечаются от четырех до десяти этапов их активизации (Савицкий и др., 1986), протекавших в разное время в различных геодинамических режимах. Эти разломы являются долгоживущими и, как правило, характеризуются сложным внутренним строением как вкрест, так и вдоль простирания. Более подробно тектоническое строение, эволюция тектонических структур и магматизм региона изложены в работе Ю.Г. Кутинова и З.Б. Чистовой (2004).
Ограниченная обнаженность территории значительно затрудняет систематическое площадное изучение тектонического строения прямыми геологическими методами. Построенные разными авторами мелкомасштабные карты и схемы блоковой тектоники региона, несмотря на существенное сходство, несут и определенные принципиальные различия не только в определении генезиса и истории развития структур, но и в их пространственном размещении. Особенно наглядно это проявляется при сравнении карт, построенных по результатам дешифрирования космофотоматериалов и геоморфологических исследований, и карт интерпретации геопотенциальных полей (Кутинов и др., 2011).
Для корректного выделения тектонических нарушений нами была разработана методика, представленная на Рис. 3.
1−2 — архивные материалы: 1 — имеющиеся для всех территорий древних платформ; 2 — не всегда имеющиеся; 3−4 — карты и материалы, получаемые в процессе исследований: 3 — промежуточные; 4 — окончательные.
В результате была создана карта пространственного размещения тектонических узлов (Рис. 4).
Цифры на схеме: 1−5 — участки повышенного природного экологического риска: 1 — места гибели морских звезд, 2 — места повышенной дихотомии деревьев и повышенного содержания тяжелых металлов в коре деревьев, 3 — места массовой гибели рыб, 4 — участки с повышенным содержанием тяжелых металлов в почвах, 5 — участки изменения структуры растительного покрова.
К настоящему времени накоплены многочисленные данные, указывающие на наличие существенной зависимости между процессами в литосфере, гидросфере, атмосфере, биосфере и, частично, ионосфере Земли, гелиогеофизическими и метеорологическими факторами и тектоническими структурами земной коры.
Наименее изученными являются «энергетические» свойства тектонических нарушений, являющихся областями разрядки напряжений в земной коре. Обычно неотектонические и современные подвижки характеризуются пульсирующим режимом с изменениями направления и амплитуды перемещения, сопровождающимися вариациями, иногда значительными, геофизических полей, в первую очередь электромагнитного, вдоль дислокаций. Наиболее интересными объектами для изучения являются узлы пересечения тектонических дислокаций. Узлы представляют собой сложно построенные объемные тела, простирающиеся на большие глубины. С увеличением числа пересекающихся тектонических зон (как выраженных в верхних частях земной коры, так и скрытых систем нарушений) степень раздробленности, проницаемости и глубинности тектонического узла возрастает. То есть возникает и функционирует длительное время вертикальная высокопроницаемая область, которая обеспечивает коро-мантийное взаимодействие и постоянный приток флюидов и глубинных газов (Кутинов, Чистова, 2012). При этом узлы пересечения тектонических нарушений, имея сложную структуру поля проводимости, могут являться источниками наведенных вихревых токов, изменяющих общую картину геомагнитного поля (своего рода природные диполи). Так, в результате исследований нами было выявлено явление резкого увеличения амплитудно-частотных характеристик короткопериодических колебаний магнитного поля в момент магнитных бурь на площади тектонического узла. Т. е., возникают и длительное время функционируют диссипативные структуры земной коры, создающие аномальные условия развития компонентов окружающей среды.
Общей целью исследования являлась разработка комплексной модели межгеосферного взаимодействия (литосфера, атмосфера, биосфера) в районах тектонических узлов на территории Севера Русской плиты и разработка на основе полученных данных как покомпонентных (литосфера, гидросфера, биосфера, атмосфера и, частично, ионосфера), так и комплексных физико-геоэкологических количественных моделей взаимодействия геосфер в зонах влияния тектонических узлов и обоснование их типовых характеристик в геолого-геофизических материалах.
В результате проведенных ранее исследований была разработана предварительная геоэкологическая модель взаимодействия геосфер в районах тектонических узлов (Кутинов, Чистова, 2012, Kutinov, Chistova, 2010). В дальнейшем был необходим переход к разработке покомпонентных моделей и на их основе комплексной физико-геоэкологической количественной модели взаимодействия (литосфера, гидросфера, биосфера, атмосфера и, частично, ионосфера) в районах тектонических узлов и оценке их влияния на окружающую среду (рис. 5). Успешное решение поставленной задачи определялось в первую очередь системным анализом геолого-геофизических материалов и проведением мониторинговых наблюдений, разработкой теоретических основ количественного описания межгеосферных процессов.
Важно подчеркнуть, что длительность функционирования таких систем, как крупные узлы разломов и/или зоны их динамического влияния, может достигать десятков и сотен миллионов лет. Естественно, что в объеме литосферы, занятом этой системой, за это время могут происходить различные геологические процессы: погружение с накоплением осадочных и вулканогенных толщ, тектоническое скучивание, метаморфизм, повторная магматическая деятельность, общее поднятие территории с энергичной поверхностной эрозией и т.п. Эти геологические явления влияют на положение верхней и нижней границ исследуемой системы, изменяют направление миграции расплавов и флюидов, приводят к нарушению термобарического поля системы (Казанский, 1989). Может меняться и пространственное положение разломов, их морфокинематика и взаимоотношения между собой. То есть узлы тектонических нарушений относятся к сложным открытым системам. Определение систем и правила их исследований изложены в общей теории систем. Система — это множество элементов, приведенных в сложную иерархическую связь друг с другом, образующих неразрывную общность, обособившуюся от окружения и находящуюся с ним в состоянии динамического равновесия (Ковалев, 1990). Если система подвергается какому-нибудь внешнему воздействию, то внутри нее возникают процессы, направленные на подавление, нейтрализацию этого внешнего влияния. Чем сложнее система, тем разнообразнее ее внутренние и внешние взаимодействия и тем выше устойчивость системы для блокирования возмущений.
Сложные открытые системы не только не пребывают в постоянном стационарном режиме, но не могут долго существовать и в режиме колебательном. Для них характерны так называемые режимы с перемешиванием (Ковалев, 1990). Подобные системы не подчиняются линейным закономерностям из-за большого числа внешних и внутренних связей и степеней свободы. Они обнаруживают устойчивость в целом при неустойчивости в каждой точке. В этих локальных неустойчивых системах идет обмен с окружающей средой информацией, энергией, веществом. Макросистемы относятся к системам с неустойчивой динамикой и появляются там, где возникают потенциалы и градиенты. В таких системах нередки катастрофические исходы, так как критические состояния у них весьма чувствительны даже к небольшим возмущениям. То есть такие системы могут иметь разные черты при схожем генезисе и геодинамическом режиме.
Большинство данных было получено геофизическими методами, которые интегрально отражают эволюцию региона и с помощью которых зачастую весьма сложно отнести особенности строения земной коры к определенному тектоно-магматическому этапу. К тому же геофизические материалы достаточно часто фиксируют не геологические границы и блоки, а определенное напряженно-деформированное состояние вещества, и переменчивы во времени. Но в процессе прогноза приходиться мириться с существующими неопределенностями, компенсируя их анализом независимых материалов.
Для уточнения глубинного строения надпорядковых узлов нами привлекались данные сейсмотомографии по территории Канадской алмазоносной провинции. Этот выбор обусловлен тем обстоятельствам, что Канадская и Архангельская провинции относятся к единой Канадско-Русской мегапровинции (Милашев, 1990, Кимберлиты, 1990), и их тектонические структуры пережили сходные этапы развития.
В целом были созданы следующие покомпонентные модели на уровнях: 1) мантия-литосфера; 2) фундамент-осадочный чехол-современный рельеф; 3) литосфера-атмосфера; 4) литосфера-атмосфера-биосфера.
Рассмотрим эти модели более подробно.
«Корни» надпорядковых тектонических узлов отражаются в глубинных неоднородностях мантии по данным сейсмотомографии с глубин как минимум порядка 400 км (Рис. 6) и прослеживаются в структуре поверхности Мохо (рис. 7) и во всех слоях земной коры (рис.7, 8), что отражает многоэтапную эволюцию структур.
1 — выходы кимберлитов; 2 — проекция предполагаемых ослабленных зон на земной поверхности.
А — на карте глубины залегания поверхности Мохоровичича Восточно-Европейской платформы (ВЕП) [92]; Б — на карте «резкости» границы Мохоровичича ВЕП [92]. Выделены области (со значения К более 0,9) с активизированными свойствами границы Мохоровичича.
Следует отметить, что «след» узла от нижнего слоя земной коры к верхнему закономерно увеличивается по площади (Рис. 8).
Структура поверхности Мохо отличается своеобразным рисунком, отражающим многоэтапную эволюцию региона и влияние рифейских авлакогенов северо-западного и северо-восточного простирания, и уменьшенной глубиной залегания. На карте «резкости» границы Мохо регион отчетливо выделяется контуром зон границ Мохоровичича с активизированными свойствами.
Анализ имеющихся в распоряжении авторов данных подтверждает сделанные выводы об обособленности региона от окружающих территорий в структуре нижнего, среднего и верхнего слоя земной коры (Рис. 8).
А — карта мощности нижнего слоя земной коры Восточно-Европейской платформы (ВЕП) (Юдахин и др., 2003); Б — карта мощности среднего слоя земной коры (ВЕП) (Юдахин и др., 2003); В — карта мощности верхнего слоя земной коры (ВЕП) (Юдахин и др., 2003); Г — скорость Р-волн на поверхности Мохоровичича (Щукин и др., 1995): блоки со средней скоростью Р-волн, км/с: 1 — 7.80−8.00; 2 — 8.20; 3 — 8.40; 4 — более 8.40; 1 — «след» узла
По результатам ГСЗ на севере платформы достаточно четко выделяется субширотная полоса повышенной раздробленности земной коры (Рис. 8, Г), которая отчетливо выделяется в структуре первого и третьего (трехслойная модель) слоев земной коры и в скорости Р-волн на поверхности Мохо.
Это подтверждается и в структуре термической модели литосферы от 200 до 10 км (Рис. 9). Таким образом, надпорядковый узел разломов представляет собой холодный мантийный клин глубиной более 200 км, в котором на разных глубинах наблюдается отрицательная аномалия температур, причем ее размеры увеличиваются от верхнего к нижнему слою земной коры, причем на глубинах 10−20 км она отражается слабо.
Испытывая давление со стороны зоны спрединга, вышеописанная структура за счет наличия «мантийного якоря» представляет собой как бы многослойную структуру (в вертикальном разрезе), в которой движение каждого слоя имеют свою скорость (максимальную в верхнем, более жестком слое) (Рис. 10).
1 — скорость распространения упругих волн; 2 — очаги землетрясений; 3 — ослабленные зоны в земной коре (волноводы); 4 — разломы; 5 — направление регионального сжатия; 6 — поднятие Балтийского щита; 7 — направления вертикальных движений блоков; 8 — направление горизонтального проскальзывания.
А — модель современной динамики земной коры Балтийского щита (Леонов, 1997): 1 — гранито-гнейсовый слой с пониженными значениями Vp; 2 — гранито-гнейсовый слой с повышенными значениями Vp; 3 — базальтовый слой; 4 — тектонические нарушения: а) первого порядка, б) второго порядка; 5 — сейсмические границы; 6 — физические параметры (Vp, км/с; б, г/см3); 7 — коровые волноводы;Б — Фрагмент разреза по профилю ГСЗ №3 (Кутинов, Чистова, 2004).
В строении земной коры, по данным метода глубинного сейсмического зондирования (ГСЗ), выделяются волноводы на глубинах 7−15 км и 20−25 км, являющиеся структурами проскальзывания (Рис. 10). Горизонтом проскальзывания на глубинах 7−15 км, скорее всего, является среднекоровый срыв на границе слоев коры с разными реологическими свойствами (волновод) (Рис. 10). Ниже глубин 15−20 км до границы Мохо в земной коре континентальных платформ выделяется подвижный слой, в отличие от хрупкой верхней коры, обладающий более высокой пластичностью. В нижней коре при определенных условиях происходит течение материала в горизонтальной плоскости, в свете чего она получила название расслоенной (ламинированной) нижней коры (Леонов, 1997). Под действием горизонтальных напряжений и вертикальных эндогенных сил происходит ремобилизация древнего структурного плана и оживление уже существующих разломов.
В результате происходит проскальзывание верхнего слоя, приводящее к короблению верхних частей земной коры, возникновению латеральных срывов (волноводы-линзы, зоны трещиноватости на глубинах 10−15 км) и распространению зон повышенной трещиноватости и флексур, чередующихся с прогибами в осадочном чехле. Сам «мантийный якорь» испытывает наряду с горизонтальным давлением и косовое выдавливание, сопровождающееся латеральным перетоком вещества. Последнее, в свою очередь, вызывает латеральное отжимание глубинных флюидов (разломы, по данным ГСЗ, достигают как минимум поверхности Мохо) и переходят вверх по разрезу из зон сжатия в зоны растяжения. Т. е. вдоль глубинных разломов и грабенов юго-восточного склона Балтийского щита возникает своего рода полициклическая деформационная волна, вдоль фронта распространения которой происходит смена латерального перетока флюидов на вертикальный. Судя по характеру миграции очагов землетрясений, эта волна распространяется, прежде всего, по глубинным разломам северо-западного простирания, ограничивающим рифейские грабены.
Разработанная нами модель развития глубинных разломов (Рис. 11) говорит, что глубинность структур может быть значительно больше (Рис. 6, 9), но прослеживание их из-за ступенчатого строения весьма затруднительно (Рис. 12). Поэтому источник глубинной дегазации и электромагнитной эмиссии может быть значительно глубже, чем в земной коре региона, как обычно стандартно считается.
I — Возмущенные скорости поперечных сейсмических волн согласно томографической инверсии сейсмических волн (провинция Саскачеван, Канада) (Лехи, Тейлор, 1997); II — термическая модель литосферы региона на разных глубинах (Глазнев, 2003); III — геолого-геофизический разрез литосферы по 400в.д. (хр. Гаккеля — Архангельск) (Шварцман, 2001): 1 — осадочный слой земной коры; 2 — консолидированная земная кора; 3 — верхняя мантия литосферы; 4 — граница М и температура на ней, 0С; 5 — граница литосферы и астеносферы по геотермическим данным; 6 — график изменения теплового потока, мВт/м2; 7 — линия его фоновых значений на континенте и в океане; 8 — астенолиты; 9 — направления активного тепломассопереноса в астеносфере и преобладающих напряжений в нижней части литосферы; 10 — изотермы в верхней части земной коры, 0С; IV — проявление тектонического узла поверхности Мохоровичича (Юдахин и др., 2003); V — отражение надпорядкового тектонического узла строении земной коры; VI — строение земной коры Балтийского щита и прилегающих территорий; VII — процесс развития тектонических структур за гидро‑ и магморазрыва; VIII — отражение надпорядкового тектонического узла в характере потенциальных геофизических полей; IX — модель эволюции рифтогенных систем и тектонических узлов севера Русской плиты (Кутинов, Чистова, 2012)
Таким образом, строение надпорядкого тектонического узла имеет фрактально-подобную (древовидную) структуру, схожую со структурой адвективных поднятий и диапиров мантийных астенолитов, и, возможно, на уровне мантии им обусловленную.
Рассмотрим более детально строение тектонических узлов на уровне фундамент-осадочный чехол-современный рельеф (Рис. 13). В целом наблюдается та же тенденция, что и на уровне мантия-литосфера, т. е. тектонические узлы первого порядка (Рис. 12) имеют такую же фрактально-подобную (древовидную) структуру.
I — геологический разрез (Коротков, 2011); II — отражение бортов Онежского грабена в сейсмологических материалах (по данным Данилова К. Б.); III — фрагменты карт потенциальных полей севера Русской плиты, их трансформант (карт разностного и осредненного поля ∆g) и профиль ГСЗ (Кутинов, Чистова, 2004); IV — результаты обработки элементов-индикаторов разломов (Кутинов, Чистова, 2004); V — геоэлектрический разрез (Коротков, 2011); VI — геологический разрез через палеодолину (Кутинов, Чистова, 2004); VII — петрофизические модели и геолого-геофизические модели палеодолин (Кутинов, Чистова, 2004); VIII — районирование территории Архангельской области по формам отражения структур фундамента в дневном рельефе; IX — карта эпицентров землетрясений Севера Европейской части России за 1467−1995 гг. (Юдахин, Французова, 2000); X — отражение тектонического узла на карте макросейсмического поля ВЕП и схеме разломно-блоковой тектоники северо-запада Восточно-Европейской платформы; XI — карта теплового потока Европейской части России (Карта теплового., 1987).
Поверхность фундамента представляет собой пенеплен, осложненный впадинами глубиной до 4,5 км, обусловленными рифейскими грабенами (Рис. 13, I, II). В целом фундамент имеет разломно-блоковое строение. Региональные тектонические узлы образованы пересечением рифейских грабенов северо-западного и трансблоковых зон меридионального и северо-восточного простираний. Узлы их сопряжения характеризуются высокой блоковой делимостью, повышенной сейсмичностью и аномальными значениями теплового поля. Господствующее простирание разрывных нарушений — северо-восточное и субмеридиональное, существенно подновлялись и рифейские структуры северо-западного простирания. Т. е. система разломов представляла собой динамо-пару, функционировавшую в режиме растяжения-сжатия, и на пересечении разноориентированных дислокаций возникал вертикальный глубинный стволовой канал с аномальными свойствами среды (рис. 14), что подтверждается сейсмическими событиями.
1 — осадочные отложения; 2 — рифейские осадочно-вулканические отложения; 3 — гранитно-метаморфический слой; 4 — базальтовый слой; 5 — поверхность Мохо; 6 — высоко проницаемая вертикальная мантийная колонна; 7 — теплопотоки (а), флюидные потоки (в); 8 — конические разломы; 9 — зоны проницаемости (трещиноватости, разломы); 10 — осевые грабены; 11 — направление и интенсивность растяжения; 12 — зоны сжатия.
I-III — стадии развития: I — зарождения и созревания, II — активного рифтогенеза, III — затухания; IV-палеозойская тектоно-магматическая активизация рифейскогопалеорифта: IV/1 — вендская активизация, IV/2 — образование вертикальной высокопроницаемой структуры (герцинский этап); V — современный этап: схема прецессии структурного блока земной коры
В целом в фундаменте развиты контрастные структуры: горсты и авлакогены северо-западного простирания, осложненные дизьюнктивами других направлений. Авлакогены вносят основной вклад в строение потенциальных полей (Рис. 13, III).
Тем не менее характер глубины изотермы Кюри (Рис. 15 А), глубинных аномалий (Рис. 15 Г) и осредненного поля силы тяжести (Рис. 16 Д) свидетельствуют, что этого вклада недостаточно для полной компенсации потенциальных полей, хотя разломы, ограничивающие авлакогены, прослеживаются до границы Мохо, «исчезновение» отражения авлакогенов в поле силы тяжести (радиус осреднения — 100 км), свидетельствует, что основным источником аномалообразующих объектов северо-западного простирания являются тектонические структуры верхней части земной коры.
16:06
15:55
15:41
15:28
15:14
14:55
14:41
14:26
14:13
13:59
13:45
13:31
13:16
13:03
12:49
12:35
12:21
12:08
11:55
11:41
11:29
11:17
11:04
10:51
10:39
10:26
10:13
10:01
09:49
09:36
09:23
09:09
17:41
17:29
17:18
17:07
16:55
16:41
16:29
16:17
16:06
15:55
15:41
15:28
15:14
14:55
14:41
14:26
14:13
13:59
Вс | Пн | Вт | Ср | Чт | Пт | Сб | |
1 | 2 | 3 | |||||
4 | 5 | 6 | 7 | 8 | 9 | 10 | |
11 | 12 | 13 | 14 | 15 | 16 | 17 | |
18 | 19 | 20 | 21 | 22 | 23 | 24 | |
25 | 26 | 27 | 28 | 29 | 30 |
15:39
09:49
13:25
14:04
12:51
15:28
12:39
13:24
13:02
12:39
15:08
11:15
14:33
12:26
11:23
13:25
15:19
14:27
15:16
12:13
15:14
14:44
13:25
11:06
13:12
11:13
14:15
11:26
09:35
11:41
10:37
10:55
12:28
12:13
12:51
11:35
10:45
16:51
10:21
14:27
12:37
11:23
13:03
10:47
13:03
13:15
14:58
14:55
14:31
14:19